Tetrahedron Letters No.51, pp. 4481-4484, 1970. Pergamon Press. Printed in Great Britair.

THE STEREOCHEMISTRY OF N-METHYL-3-(P-FLUORO-BENZOYL)-4-HYDROXY-4-(P-FLUOROPHENYL)PIPERIDINE¹

M. D. Draper, F. J. Petracek, M. W. Klohs Chemical Research Department, Riker Laboratories, Inc. Northridge, California 91324, U.S.A.

Richard G. Parker and John D. Roberts Gates and Crellin Laboratories of Chemistry² California Institute of Technology Pasadena, California 91109, U.S.A.

(Received in USA 24 August 1970; received in UK for publication 5 October 1970)

A rigorous assignment of the stereochemistry of substituted piperidines of the type 1 has not been reported. However, a paper by Unkovskii, et al., ³ reporting infrared spectral studies of intramolecular hydrogen bonding in closely similar systems suggests that the bulky benzoyl and phenyl groups would be most energetically favored disposed in the <u>trans</u>-diequatorial configuration of the piperidine ring (chair form, 2). This evidence is, however, equivocal because such bonding is also possible in other conformations.

Because of current interest in N-methyl-3-(p-fluorobenzoyl)-4-hydroxy-4-(p-fluorophenyl)piperidine as a potential antiinflammatory agent, ⁴ an unambiguous assignment of the stereochemistry was required to undertake a more sophisticated examination of the relationship between its structure and activity. This analysis was carried out with the aid of nmr spectra data at 60 and 220 MHz and an X-ray diffraction study. The method of synthesis of 1 has been reported elsewhere. ⁵ The 60-MHz spectrum of the free base (Figure 1A) permitted only the assignment of δ values for the N-CH₃, OH (H₅), and H₆ protons (partial Newman projection formula 2).

Deuterium exchange carried out in CDCl₁ with small amounts of D₂O enabled assignment of a doublet at 305 Hz to the H_s proton. Dilution experiments showed only a very small (2 Hz) diamagnetic shift on extrapolation of the concentration versus H_{ϵ} frequency curve to infinite dilution, indicative of intramolecular hydrogen bonding. Also, the hydroxyl proton was shown to be coupled by 2.5 cps to some other proton, a point of special interest because this is a rather large value⁶ for a long-range coupling to any of its neighboring ring protons. The N-CH₃ and H_{δ} signals were clearly identifiable by chemical shift and integration as a strong singlet at 144 Hz and a quartet at 258 Hz respectively. The remaining piperidine ring protons were identifiable only as two major groupings. The H_1 and H_2 group appeared at 95–135 Hz, and a second group consisting of H₃, H₄, H₇, H₈ were downfield from 155-190 Hz; but the complexity of these regions did not permit assignments of chemical shifts or coupling constants. Several 220-MHz spectra were then run on the free base in CDCl, before and after D,O exchange (see Figure 1B). Although the 220-MHz spectra were not strictly first-order, it was possible on the basis of conformation 2 for the piperidine ring to arrive at approximate chemical shift and J values for all the H₁₋₈ protons. More refined parameters were then obtained with the LAOCOON program $^{\prime}$ and these are summarized in Table I. The ${}^{3\!J}_{
m H-C-C-H}$ values were in reasonable agreement with those predicted from the Karplus equation⁸. A calculated spectrum corresponding to these parameters for the 60-MHz resonances of hydrogens at carbons 1, 2, 3, 4, 7 and 8 is also shown in Figure 1.

TABLE I Chemical Shift and J Values for H_1 - H_8 Protons of 1

Hı	Chemical shift, Hz at 220 MHz [*]	Protons	J , Hz *	³ J _{HC-C-H} , Hz, predicted from Karplus Eq.
N-CH3	535	1,2	13.0	gem
1	401	1,3	2.2	1.7
2	461	1,4	2.2	1.7
3	617	2,3	13.0	10.0
4	609	2,4	4.5	1.7
5	-	3,4	14.0	gem
6	-	6,7	12.0	10.0
7	601	6,8	4.0	1.7
8	649	7,8	10.0	gem

* Refined values from LAOCOON analysis of 220-MHz pmr spectrum.

Although the piperidine ring was thus indicated to have the chair conformation, the *trans* disposition of the *p*-fluorophenyl and *p*-fluorobenzoyl groups was not definitely proven because the nmr shifts and couplings of the ring hydrogens would be expected to fit about as well for the structure with the 4-OH and 4-*p*-fluorophenyl reversed from that shown in 2. However, the *trans* arrangement is not only expected to be energetically more favorable, but also places the H_5 and H_2 protons in the so-called W-configuration which should be especially favorable for the large observed coupling for H_5 .

Figure 1. A, Proton nmr spectrum of 1 in CDCl₃ at 60 MHz and ambient temperature. Upper curve is the experimental spectrum and the lower curve was calculated using the mical shifts and couplings in Table I. B, 220-MHz pmr spectrum of 1 in CDCl₃.

Figure 2. Stereoprojection of $\frac{1}{2}$ as determined by X-ray diffraction.

The stereochemistry of 1 as the crystalline hydrobromide was established as based on conformation 2 by X-ray diffraction.⁹ The hydrobromide crystallizes in a monoclinic space group P2₁/c with four molecules in a unit cell of dimensions: a = 17.763, b = 7.198, c = 16.097 A and $\beta = 113.11^{\circ}$. The intensity data (1819 reflections) were collected on a General Electric-Datex diffractometer, using Ni-filtered Cu radiation. The bromide ions were located by means of a Patterson map and the entire trial structure was revealed in the first Fourier map. The trial structure was refined to an R index of 7.2% by the method of least squares. The final refinement cycles contained the following parameters: coordinates, ani-sotropic temperature factors and scale factor. The hydrogen positions were calculated and added to the structure factor calculations but were not included in the refinement sycles. A stereoprojection of the structure is shown in Figure 2.

References

- 1. The X-ray and nmr studies which were carried on at the California Institute of Technology were supported by the National Science Foundation.
- 2. Contribution No. 4066.
- B. V. Unkovskii, A. A. Mel'nikova, M. G. Zaitseva, and Yu. F. Malina, <u>Zhur. Org. Khim.</u>, .2, 1501 (1966).
- 4. M.D. Draper and K. Keller, U.S. Patent 3, 272, 838.
- M.D. Draper, Brit. Patent 1, 169, 138; free base m. p. 152. 5-154. 5°, HBr salt m. p. 202-203°.
- J. C. Jochims, G. Taigel, A. Seeliger, P. Lutz, and H. E. Driesen, <u>Tetrahedron Letters</u>, 44, 4363 (1967).
- 7. S. Castellano and A. A. Bothner-By, J. Chem. Phys., 41, 3863 (1964).
- 8. M. Karplus, J. Am. Chem. Soc., 85, 2870 (1963).
- 9. F. J. Petracek, N. Sugisaka, M. W. Klohs, R. G. Parker, J. Bordner, and J. D. Roberts, <u>Tetrahedron Letters</u>, 10, 707 (1970).